

Circulation and Gas Exchange

PowerPoint® Lecture Presentations for

Eighth Edition Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

- Every organism <u>must exchange</u> materials with its environment
- Exchanges ultimately occur at the cellular level
- In unicellular organisms, these exchanges
 OCCUT directly with the environment

- For most cells making up multicellular organisms, direct exchange with the environment <u>is not possible</u>
- Gills الخياشيم are an example of a specialized exchange system in animals
- Internal transport and gas
 exchange are functionally
 related in most animals

Concept 42.1: Circulatory systems link exchange surfaces with cells throughout the body

- In most animals, transport systems connect the organs of exchange with the body cells
- Most complex animals have internal transport systems that circulate fluid

Open and Closed Circulatory Systems

- More complex animals have either open or closed circulatory systems
- Both systems have three basic components:
 - A circulatory <u>fluid</u> (blood or hemolymph (الدَّمَلِمْف)
 - A set of <u>tubes</u> (blood vessels)

– A muscular <u>pump</u> (the heart)

 In insects, other arthropods, and most molluscs, blood bathes the organs directly in an <u>open circulatory system</u>

 In an open circulatory system, there is <u>NO</u> <u>distinction between blood and</u> <u>interstitial fluid</u>, and this general body fluid is more correctly called <u>hemolymph</u>

What is interstitial fluid?

- In a closed circulatory system, blood is <u>Confined</u> مَقْصُور على to vessels and is distinct from the interstitial fluid
- Closed systems are <u>more efficient</u> at transporting circulatory fluids to tissues and cells

Organization of Vertebrate Circulatory Systems

- Humans and other vertebrates have a <u>closed</u> circulatory system, often called the cardiovascular system
- The three main types of blood vessels are:
 - <u> شرايين Arteries –</u>
 - <u>أوردة Veins اور</u>

- and

الأوعية الشعرية Capillaries –

<u>Arteries</u> branch into <u>arterioles</u> and carry blood to <u>capillaries</u>

- Networks of capillaries called <u>Capillary</u>
 <u>beds</u> are the sites of chemical exchange between the blood and interstitial fluid
- Venules الوُرَيداتُ converge into Veins and return blood from capillaries to the heart

- Vertebrate hearts contain <u>two or more</u> <u>chambers</u>
- Blood enters through an atrium أَذَين and is <u>pumped</u> out through a ventricle بطين

- Bony fishes, rays, and sharks have Single
 Circulation with a two-chambered heart
- In single circulation, blood leaving the heart passes through two capillary beds before returning

Double Circulation

- Amphibian, reptiles, and mammals have double circulation
- Oxygen-poor and Oxygen-rich blood are pumped separately from the right and left sides of the heart

- In reptiles and mammals, oxygen-poor blood flows through the pulmonary circuit الرّئويَّة to pick up oxygen through the lungs
- Oxygen-rich blood delivers oxygen through the <u>Systemic</u> جهازي circuit

 Double circulation maintains higher blood pressure in the organs than does single circulation

Concept 42.2: Coordinated cycles of heart contraction drive double circulation in mammals

 The mammalian cardiovascular system meets the body's continuous demand for O₂

Mammalian Circulation

Mammalian Circulation

- Blood <u>begins</u> its flow with the <u>right ventricle</u> pumping blood to the lungs
- In the lungs, the blood loads O_2 and unloads CO_2

- Oxygen-rich blood from the lungs <u>enters the heart at the</u> <u>left atrium</u> and is <u>pumped</u> <u>through the aorta to the body</u> tissues by the left ventricle
- High Pressure Verae Cave Aora Verae Cave Hight Fight Ventricle Ventricle Ventricle
- The <u>aorta provides blood</u> to the heart through the <u>coronary</u> <u>arteries</u>

 Blood <u>returns</u> to the heart through the <u>superior vena</u> <u>cava</u> (blood from head, neck, and forelimbs) and <u>inferior</u> <u>vena cava</u> (blood from trunk and hind limbs)

 The superior vena cava and inferior vena cava flow into the right atrium

The Mammalian Heart: A Closer Look

 A closer look at the mammalian heart provides a better understanding of double circulation

- The heart contracts and relaxes in a rhythmic cycle called the <u>cardiac cycle</u>
- The <u>Contraction</u>, or pumping, phase is called <u>Systole</u> الفَلْب
- The <u>relaxation</u>, or filling, phase is called <u>diastole</u> انبساط القلب

- The heart rate, also called the <u>pulse</u>, is the number of beats per minute
- The stroke volume حَجْمُ النَّفْضَة is the amount of blood pumped in a single contraction
- The cardiac output النبتاج القلبي is the volume of blood pumped into the systemic circulation per minute and depends on both the heart rate and stroke volume

- Four Valves prevent backflow of blood in the heart
- The <u>atrioventricular (AV) valves</u> المستمام separate each atrium and ventricle
- The <u>semilunar valves</u> الصمّامَاتُ الهلاَلِيَّةَ <u>control</u> blood flow to the aorta and the pulmonary artery

- The <u>"lub-dup</u>" sound of a heart beat is caused by the <u>recoil</u> of blood against the AV valves (lub) then against the semilunar (dup) valves
- Backflow of blood through a defective valve نَفْخَةٌ قَلْبِيَّة causes a <u>heart murmur</u>

Maintaining the Heart's Rhythmic Beat

 Some cardiac muscle cells are Selfexcitable, meaning they <u>contract without</u> any signal from the nervous system

- The sinoatrial (SA) node العُقْدَةُ الجَيْبِيَّة , or pacemaker الأُذَيْنِيَّة, sets the rate and timing at which cardiac muscle cells contract
- Impulses from the SA node <u>travel</u> to the <u>atrioventricular (AV) node</u> المُذَينِيَّةُ
- At the AV node, the impulses are <u>delayed</u> and then travel to the Purkinje fibers that make the ventricles contract

 Impulses that travel during the cardiac cycle can be recorded as an <u>electrocardiogram (ECG or EKG)</u> مخطط کهربائی للقلب Pacemaker generates wave of signals to contract.

ECG 🗹

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The pacemaker is <u>influenced</u> by nerves, hormones (i.e., epinephrine), body temperature, and exercise
- An increase of <u>body temperature</u> by 1C, increases heart rate by 10 beats /min

Concept 42.3: Patterns of blood pressure and flow reflect the structure and arrangement of blood vessels

 The <u>physical principles</u> that govern movement of water in plumbing systems also influence the functioning of animal circulatory systems

Blood Vessel Structure and Function

 The epithelial layer that lines blood vessels is called the endothelium بطانة الأوعية إندموية Fig. 42-10

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

 Capillaries have <u>thin walls</u>, the endothelium plus its basement membrane, to <u>facilitate</u> <u>the exchange</u> of materials

 Arteries and veins have an endothelium, smooth muscle, and connective tissue

- Arteries شرايين have thicker walls than veins to <u>accommodate</u> the high pressure of blood pumped from the heart
- In the <u>thinner-walled veins</u>, blood flows back to the heart mainly as a result of <u>muscle action</u>

Blood Flow Velocity

 Physical laws governing movement of fluids through pipes affect blood flow and blood pressure

- Velocity of blood flow is <u>slowest</u> in the capillary beds, as a result of the high resistance and large total cross-sectional area
- Blood flow in capillaries is necessarily slow for exchange of materials

The interrelationship of <u>cross-sectional area</u> of blood vessels, blood flow velocity, and blood pressure

Blood Pressure

 Blood pressure is the <u>hydrostatic pressure</u> that blood exerts <u>against the wall of a vessel</u>

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	120 - 129	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 - 139	or	80 - 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120

Changes in Blood Pressure During the Cardiac Cycle

- Systolic pressure is the pressure in the arteries during <u>ventricular systole</u> انْقِبَاضٌ; it is the <u>highest</u> pressure in the arteries
- Diastolic pressure الضَّغْطُ الانْبِساطِيّ is the pressure in the arteries during diastole; it is lower than systolic pressure
- A pulse is the <u>rhythmic bulging</u> of <u>artery walls</u> with each heartbeat

- Blood pressure is determined by cardiac output and <u>peripheral resistance</u> due to constriction تَضَيَق of arterioles
- Vasoconstriction تَضَيَّق الأوعِيَة is the <u>contraction</u> of smooth muscle in arteriole walls; it increases blood pressure
- Vasodilation تَوَسَّعُ الأُوعِيَة is the <u>relaxation</u> of smooth muscles in the arterioles; it causes blood pressure to fall

- Blood pressure is generally measured for an artery in the arm at the same height as the heart
- Blood pressure for a healthy 20 year old at rest is <u>120 mm Hg at systole</u> and <u>70</u> <u>mm Hg at diastole</u>

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Measurement of blood pressure

Capillary Function

 Capillaries in major organs are <u>usually</u> <u>filled to capacity</u>

Blood supply varies in many other sites

 <u>Two mechanisms</u> regulate distribution of blood in capillary beds:

 Contraction of the <u>smooth muscle layer</u> in the wall of an arteriole constricts يقلّص the vessel

Fig. 42-15

Blood flow in capillary beds

The critical exchange of substances between the blood and interstitial fluid takes place <u>across the thin endothelial walls</u> of the capillaries

Fig. 42-16

Body tissue **INTERSTITIAL FLUID** Capillary Fluid Net fluid movement out exchange Net fluid movement in between capillaries and the **Direction of** interstitial blood flow fluid **Blood pressure** Pressure Inward flow Outward flow **Osmotic pressure** Venous end Arterial end of capillary

Fig. 42-16a

Fluid Return by the Lymphatic System

- The lymphatic system الجِهازُ اللِّمْفِيَ returns fluid that <u>leaks</u> out in the capillary beds
- This system aids in body defense
- Fluid, called lymph, reenters the circulation directly at the venous وريدى end of the capillary bed
- The <u>lymphatic system drains into veins in</u> <u>the neck</u>

 Lymph nodes العقد اللمفاوية are organs that <u>filter</u> lymph and play an important role in the <u>body's defense</u>

<u>Edema اِسْتِسْقاء</u> is <u>Swelling</u> caused by disruptions in the flow of lymph